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• 2D segmentations were combined across multiple planes and re-segmented into 3D
objects. The reconstructed 3D stack is visualized utilizing a napari[7] plugin.
• The pipeline can identify the total number of cell compartments and extract 3D

volumetric dimensionalities from 2D segmentation results.

• A single representative stack was chosen and 27 2D slices from the stack was split into 512x512 pixel tiles.
Each tile was then divided into training (80%) and validation (20%) sets based on a stratified Monte Carlo
sampling method.

• In order to account for the small dataset, a series of image augmentations were performed. In addition, L2 
regularization was applied to prevent the model from overfitting.

• A deep learning model using a modified UNet framework utilizing a pre-trained MobileNetV2 (CNN)[5] 
model as the encoder and a Pix2Pix model (cGAN)[6] as the decoder was developed to segment cell, cell 
boundaries, and background.

• Encoder robustness was boosted via transfer learning with ImageNet. The model was trained to 
convergence for 65 epochs and the top 54 layers of the model were trained in isolation for greater 
performance. 
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Methods

Results

• We applied data augmentation strategies to express class invariances along with
feature extraction techniques and optimized the network structure to effectively
utilize extremely small dataset.
• We demonstrated that deep learning with adequate framework can be effectively

used to tackle challenging computer vision analysis tasks, especially when training
data is sparse.

• Incorporate learning representations to reweight weak supervision and to enforce
structured prior knowledge
• Determine the optimal training set size necessary to achieve the desired performance

Conclusions

Future Directions

Acknowledgements

• Bioimage segmentation is a common but challenging task, especially in dealing with
complex biological properties due to closely packed structures, high variation in
shapes and sizes, and complex morphology.

• While deep learning provides an opportunity to tackle previously intractable
bioimage analysis tasks, large amounts of annotated data is generally required to
train a reliable network.

• However, curation of a sizable and diverse training dataset is labor intensive and
challenging, which limits the development of high accuracy segmentation models on
such datasets.

• Approach: We present a robust training pipeline that utilizes
1. Data augmentation and data regularization
2. Feature extraction and representation learning
3. Optimized network structure to efficiently utilize limited data

• Conventional image analysis tools along with existing deep learning tools
(CellPose[1], StarDist[2], NucleAlzer[3]) largely failed in performing segmentation
tasks on a high-variation, sparse, and limited dataset, though we achieved moderate
success with ilastik + multi-state CellProfiler[4] segmentation.

Motivation

Background

Dataset

• A 3D image stack of the C. elegans germline composed of 1024x1024 pixel images of
0.207 𝜇m x 0.207 𝜇m pixels.

• High variation in cell sizes and shapes.
• Ground truth annotations were created using 3dmod.

Figure 1. StarDist and CellPose segmentation results

Figure 2. Deep learning framework to optimize segmentation performance with limited data. (A) Proposed 
workflow. (B) Simplified augmentation framework. 

Results, cont’d
3D analysis allows quantitative measurement extraction 

Figure 3. 3D reconstruction of cellular compartments

• Model achieved 0.985 accuracy in training set and 0.973 accuracy in validation set.
• The model with the lowest validation loss was tested on an unseen, independent set of 2D slices from a

separate stack.
• Model performance was evaluated on visual and performance metrics and confirmed that the model is

capable of multi-class segmentation even on a highly sparse, unequally labeled, limited dataset.
• CellProfiler pipeline was utilized to post-process the model prediction results

2 2

Effective representation learning with limited labeled data is possible
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